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This paper focuses on modeling and estimating tail parameters of loss distribu-
tions from Taiwanese commercial fire loss severity. Using extreme value theory,
we employ the generalized Pareto distribution (GPD) and compare it with stan-
dard parametric modeling based on lognormal, exponential, gamma and Weibull
distributions. In an empirical study, we determine the thresholds of the GPD
using mean excess plots and Hill plots. Kolmogorov–Smirnov and likelihood ratio
goodness-of-fit tests are conducted, and value-at-risk and expected shortfall are
calculated. We also construct confidence intervals for the estimates using the
bootstrap method.

1 INTRODUCTION

For a non-life insurance company, just a few individual claims made upon a portfolio
often make up the majority of the indemnities paid out by the company. Among the
largest insurance claims, commercial fire insurance has the highest value. Hence,
gaining an understanding of the tail distribution of fire loss severity is useful for the
pricing and risk management of a non-life insurance company.

Historical data on loss severity in insurance is often modeled using lognormal,
exponential, Weibull and gamma distributions. However, these distributions appear
to overestimate or underestimate the tail probability. In terms of fitting the tail of
a loss function, a pioneering and well-known work by Hogg and Klugman (1984)
focused on fitting the size of loss distributions to the data. They used a truncated
Pareto distribution to fit the loss function. However, Boyd (1988) argued that they
seriously underestimated the tail region of the fitted loss distribution. Hogg and Klug-
man compared two methods of estimation, namely, maximum likelihood estimation
(MLE) and method of moment. The issue of whether extreme value theory (EVT) or
the generalized Pareto distribution (GPD) is better for measuring loss severity has also
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been discussed extensively in the literature. Several early studies argued that EVT can
provide a number of sensible approaches to this problem. Bassi et al (1998), McNeil
(1997), Resnick (1997), McNeil and Saladin (1997) and Embrechts et al (1997, 1999)
suggested that it was preferable to use a GPD in order to estimate the tail measure of
loss data. Beirlant et al (2004) pointed out that insurance loss data usually exhibits
heavy tails. They tested the method on a variety of simulated heavy-tailed distributions
to show what kinds of thresholds are required and what sample sizes are necessary to
give accurate estimates of quantiles. Therefore, it is the key to many risk management
problems related to insurance, reinsurance and finance, as shown by Embrechts et al
(1999).

Furthermore, many early researchers experimented with operational loss data on
insurance. Beirlant and Teugels (1992) modeled large claims in non-life insurance
using an extreme value model. Zajdenweber (1996) used extreme values in business
interruption insurance. Rootzen and Tajvidi (2000) used extreme value statistics to
fit wind-storm losses. Moscadelli (2004) showed that the tails of loss distribution
functions are, in the first approximation, of heavy-tailed Pareto type. Patrick et al
(2004) examined the empirical regularities in operational loss data and found that
loss data by event type is quite similar across institutions. Nešlehová et al (2006)
used EVT and the overall quantitative risk management consequences of extremely
heavy-tailed data. Chava et al (2008) focused on modeling and predicting the loss
distribution for credit-risky assets such as bonds or loans. They also analyzed the
dependence between the default probabilities and recovery rates and showed that
they are negatively correlated. Dahen et al (2010) analyzed US bank data and showed
that US banks could suffer, on average, more than four major losses a year. They
also used the extreme distribution to fit the operational losses and estimated annual
insurance premiums. Lee and Fang (2010) focused on modeling and estimating the tail
parameters of Taiwan’s commercial bank operation loss severity. They also measured
the capital for operational risk.

In an early work on fire loss, Mandelbrot (1964) used the random walks concept
and some tail distributions to model and discuss fire damage and related phenomena.
To measure the loss severity of commercial fire insurance loss, we attempt to answer
the following questions. Which techniques fit the loss data statistically and also result
in meaningful capital estimates? Are there models that can be considered to be appro-
priate loss risk measures? How well does the method accommodate a wide variety of
empirical loss data?

For the purposes of our empirical study, we measure commercial fire insurance
loss using a data-driven loss distribution approach (LDA). By estimating commercial
fire loss insurance risk on business-line and event-type levels, we are able to present
the estimates in a more balanced fashion. The LDA framework has three essential
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components: a distribution of the annual number of losses, a distribution of the dol-
lar amount of loss severity and an aggregate loss distribution that combines the two.
Strictly speaking, we utilize EVT to analyze the tail behavior of commercial fire insur-
ance loss. The results may help non-life insurance companies to manage their risk.
For the purposes of comparison, we consider the following one- and two-parameter
distributions to model the loss severity: lognormal, exponential, gamma and Weibull.
These were chosen due to their simplicity and applicability to other areas of economics
and finance. Distributions such as the exponential, Weibull and gamma are unlikely
to fit heavy-tailed data, but provide a nice comparison to heavier-tailed distributions
such as the GPD and generalized extreme value (GEV) distribution.

We succeeded fitting the GPD using exceedingly high thresholds of 5:969 � 105,
5:185 � 106 and 2:376 � 107. We show that the GPD can be fitted to commercial
fire insurance loss severity. When the loss data exceeds high thresholds, the GPD is a
useful method for estimating the tails of loss severity distributions. This means that the
GPD is a theoretically well-supported technique for fitting a parametric distribution
to the tail of an unknown underlying distribution.

The remainder of the paper is organized as follows. Section 2 introduces EVT and
goodness of fit. Section 3 gives some empirical results and analysis. Section 4 gives
a few concluding remarks and ideas for future work.

2 EXTREME VALUE THEORY

We now proceed to use EVT to estimate the tail of a loss severity distribution. Extreme
event risk is present in all areas of risk management. Whether we are concerned with
market, credit, operational or insurance risk, one of the greatest challenges for a risk
manager is to implement risk management models that allow for rare but damaging
events and permit the measurement of their consequences.

The oldest group of extreme value models is block maxima models. These are mod-
els for the largest observations collected from large samples of identically distributed
observations. The asymptotic distribution of a series of maxima is modeled, and under
certain conditions the distribution of the standardized maximum of the series is shown
to converge to the Gumbel, Frechet or Weibull distribution. The GEV distribution is
a standard form of these three distributions.

The GPD was developed as a distribution for modeling tails of a wide variety of
distributions. Suppose that F.x/ is the cumulative distribution function for a random
variable x and that threshold � is a value of x on the right tail of the distribution.
The probability that x lies between u and uC y, y > 0, is F.uC y/ � F.u/. The
probability of x being greater than u is 1 � F.u/. Define Fu.y/ as the probability
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that x is between u and uC y, conditional on x > u. We have:

Fu.y/ D Prfx � u 6 y j x > ug D F.uC y/ � F.u/

1 � F.u/
(2.1)

Once the threshold is estimated, the conditional distributionFu converges to the GPD.
We can find a limit Fu.y/ � G�;�.u/.y/ as u ! 1 (Pickands (1975) and Balkema
and de Haan (1974)):

G�;�.u/.y/ D

8̂<
:̂
1 �

�
1C �

y

�

��1=�
if � ¤ 0

1 � e�y=� if � D 0

(2.2)

where � is the shape parameter and determines the heaviness of the tail of the distri-
bution, and � is a scale parameter. When � D 0, the random variable x has a standard
exponential distribution. As the tails of the distribution become heavier (or longer
tailed), the value of � increases. The parameters can be estimated using MLE (for a
more detailed description of the model, see Neftci (2000)).

One of the most difficult problems in the practical application of EVT is choosing
the appropriate threshold for where the tail begins. The most widely used methods for
exploring the data are graphical methods, ie, quantile–quantile (Q–Q) plots, Hill plots
and the distribution of mean excess. These methods involve creating several plots of
the data and using heuristics to choose the appropriate threshold.

In EVT and its applications, the Q–Q plot is typically plotted against the expo-
nential distribution to measure the fat-tailedness of a distribution (eg, an exponential
distribution with a medium-sized tail). If the data is taken from an exponential distri-
bution, the points on the graph would lie along a straight line. If the graph is concave,
this indicates a fat-tailed distribution, whereas a convex shape is an indication of
a short-tailed distribution. In addition, if the Q–Q plot deviates significantly from a
straight line, then either the estimate of the shape parameter is inaccurate or the model
selection is untenable.

Selecting an appropriate threshold is a critical problem with the peaks-over-
threshold method. There are two graphical tools used to choose the threshold: the
Hill plot and mean excess plot. The Hill plot displays an estimate of � for different
exceedance levels and is the maximum likelihood estimator for a GPD. Hill (1975)
proposed the following estimator for �. The Hill estimator is the maximum likelihood
estimator for a GPD since the extreme distribution converges to a GPD over a high
threshold u.

Let x1 > � � � > xn be the ordered statistics of independent and identically dis-
tributed random variables. We set k < n and define the Hill estimator of the tail index
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1=� based on upper-order statistics as:

Hk;n D
1

k

kX
iD1

ln

�
xi;n

xkC1;n

�

� Š H�1k;n when n!1; k=n! 0

9>>=
>>; (2.3)

The number of upper-order statistics used in the estimation is k C 1 and n is the
sample size.1 A Hill plot is constructed such that the estimated � is plotted as a function
either of k upper-order statistics or of the threshold. More precisely, the Hill graph is
defined by the set of points, and hopefully the graph is stable so that a value of � can
be chosen. The Hill plot also helps us to choose the data threshold and the parameter
value. The parameter should be chosen where the plot looks stable:

f.k;H�1k;n/; 1 6 k 6 ng (2.4)

The mean excess plot introduced by Davidson and Smith (1990) graphs the condi-
tional mean of the data above different thresholds. The sample mean excess function
(MEF) is defined as:

enu.u/ D

Pnu
iD1.xi � u/Pnu
iD1 Iu.xi>u/

(2.5)

where I D 1 if � > u, and 0 otherwise, and where nu denotes the number of data
points that exceed the threshold u. The MEF is the sum of the excesses over the
threshold u divided by nu. It is an estimate of the MEF that describes the expected
overshoot of a threshold once an exceedance occurs. If the empirical MEF has a
positive gradient above a certain thresholdu, it is an indication that the data follows the
GPD with a positive shape parameter �. On the other hand, exponentially distributed
data would show a horizontal MEF, while short-tailed data would have a negatively
sloped line.

Following Equation (2.2), the probability that x > uC y conditional on x > u is
1 �G�;�.u/.y/, while the probability that x > u is 1 � F.u/, and the unconditional
probability that x > uC y is therefore:

F.x > uC y/ D Œ1 � F.u/�Œ1 �G�;�;u.y/� (2.6)

If n is the total number of observations, an estimate of 1� F.u/ calculated from the
empirical data is nu=n. The unconditional probability that x > uC y is therefore:

nu

n
Œ1 �G�;� .y/� D

nu

n

�
1C O�

y

�

��1= O�
(2.7)

1 Beirlant et al (1996) proposed estimating the optimal k from the minimum value of the sequence
of weighted mean square error expressions.
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which means that our estimator of the tail for the cumulative probability distribution
is:

F.x/ D 1 �
nu

n

�
1C O�

x � u

�

��1= O�
(2.8)

To calculate value-at-risk (VaR) with a confidence level q it is necessary to solve the
equation:

F.VaR/ D q

From Equation (2.8), we have:

q D 1 �
nu

n

�
1C O�

VaR � u

�

��1= O�
(2.9)

The VaR is therefore:

VaR D uC
�

�

��
n

nu
.1 � q/

���
� 1

�
(2.10)

Expected shortfall (ES) is a concept used in finance and, more specifically, in the
field of financial risk measurement to evaluate the market risk of a portfolio. It is an
alternative to VaR. The expected shortfall at the p% level is the expected return on the
portfolio in the worstp% of the cases. For example, ES.0:05/ is the expectation of the
worst 5 out of 100 events. Expected shortfall is also called conditional value-at-risk
and expected tail loss.

In our case, we define the excess shortfall as the expected loss size, given that VaR
is exceeded:

ESq D E.L j L > VaRq/ (2.11)

where q.D 1 � p/ is the confidence level. Furthermore, we obtain the following ES
estimator:

ESq D
VaRq
1 � �

C
� � �u

1 � �
(2.12)

One can attempt to fit any particular parametric distribution to data; however, only
certain distributions will have a good fit. There are two ways of assessing this goodness
of fit: either by using graphical methods or by using formal statistical goodness-of-fit
tests. The former method (a Q–Q plot or a normalized probability–probability (P–P)
plot, for example) helps an individual to determine whether a fit is very poor, but
may not reveal whether a fit is good in the formal sense of statistical fit. Examples of
the latter method are the Kolmogorov–Smirnov (KS) test or the likelihood ratio (LR)
test. The Q–Q plot depicts the match or mismatch between the observed values in the
data and the estimated value given by the hypothesized fitted distribution. The KS
test is a nonparametric supremum test based on the empirical cumulative distribution
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TABLE 1 Frequencies of commercial fire loss.

Range of loss Number of Percentage Sum of loss Percentage
amount (NT$) loss events (%) amount (NT$) (%)

0–100 000 2618 62.90 74 154 281 0.63
100 001–200 000 387 9.29 54 611 060 0.46
200 001–500 000 401 9.64 127 755 196 1.08
500 001–1 000 000 198 4.75 143 612 390 1.21
1 000 001–5 000 000 335 8.05 779 265 293 6.57
5 000 001–10 000 000 75 1.81 543 222 505 4.58
>10 000 001 148 3.56 10 134 086 981 85.47

Total 4162 100 11 856 707 706 100

function. The LR test is based on exceedances over a threshold u or on the k C 1
largest-order statistics. In the GPD model, we test H0 (� D 0) against H1 (� ¤ 0),
with unknown scale parameters � > 0.

3 EMPIRICAL RESULTS AND ANALYSIS

There are 4612 observations in the data set.All commercial fire insurance loss data sets
used in this study were obtained from a non-life insurance company in Taiwan. The
data is made up of five years’ worth of fire losses. Table 1 reports the frequency and
percentage of loss events. The last two columns represent the sum and percentage
of loss amounts. The data shows that most loss events have a value of less than
NT$100 000 (New Taiwan dollars), whereas, for loss amounts, the figure is above
NT$10 000 000, with a percentage of 85.47%.

The empirical distribution in part (a) of Figure 1 on the next page summarizes
the cumulated distribution function on a log–log plot of the loss data set. We can
ascertain the threshold of the tail distribution with a phenomenological analysis of
the figure. For example, for values over 10 (on a log scale), the cumulated probability
is near to 1. Part (b) of Figure 1 on the next page shows a scatter plot of loss data.
The series indicates that there are several particularly large assessments of loss over
NT$1 million. The figure also shows us that the skewness of a loss set lacks symmetry,
and positive values for skewness in Table 2 on the next page indicate that data that is
skewed to the right (skewness coefficient of 23.113). Right-skewedness means that
the right tail is long relative to the left tail. In addition, kurtosis is a measure of whether
the data is peaked or flat relative to a normal distribution. The loss data sets with high
kurtosis tend to have a distinct peak near the mean, decline rather rapidly and have
heavy tails.
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FIGURE 1 (a) Empirical distribution of fire loss data and (b) scatter plot of fire loss amount.
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TABLE 2 Summary statistics.

Standard Number of
Mean deviation Kurtosis Skewness Minimum Maximum observations

284 800.51 28 623 111 664.794 23.113 199 1.056�109 4162

Values in New Taiwan dollars.
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FIGURE 2 Probability density function plots of loss amounts.
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(a) Lognormal. (b) Exponential. (c) Gamma. (d) Weibull. (e) GPD. (f) GEV.

It is practically impossible to experiment with every possible parametric distribution
that we know of. An alternative way of conducting such an exhaustive search could
be to fit general class distributions to the loss data in the hope that the distributions
will be flexible enough to conform to the underlying data in a reasonable way. For the
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TABLE 3 Parametric estimations for fitted functions.

(a)

Distribution Lognormal Exponential Gamma

Loglikelihood �55 913.3 �66 019.3 �58 236
Parameter 1 � D 11.2174 � D 2.8488�106 � D 0.20164
Parameter 2 � D 2.22117 — � D 1.41281�107

(b)

Distribution Weibull GPD GEV

Loglikelihood �56 766.8 �55 690 �55 607.6
Parameter 1 � D 245 204 � D 1.77364 � D 1.68294
Parameter 2 � D 0.379161 � D 40406.7 � D 48 620.7
Parameter 3 � D 0 � D 569 600 � D 569 506

purposes of comparison, we have used lognormal, exponential, Weibull and gamma
distributions as a benchmark.

We then fit the probability density function (PDF) plot of the above distributions.
Figure 2 on the preceding page shows the poor fit of the exponential, gamma, Weibull
and GEV distributions, and shows that other distributions fit the loss data much better,
especially the GPD distribution.

Table 3 lists the parametric estimations for fitted functions. The goodness-of-fit
loglikelihood value shows that the GEV model is highest, followed by the GPD model,
lognormal, Weibull and gamma functions. The exponential function has the lowest
value. However, the estimation of the GPD model depends on the choice of threshold.
In the following section we discuss the parameter estimation of the GPD further.

We use the GPD model to evaluate the VaR of fire loss severity. The first step is
to select the threshold. The MEF plots the sample mean excesses against thresholds.
In Figure 3 on the facing page we can see that the mean excess of the fire loss data
against threshold values shows an upward sloping MEF. The plot indicates a heavy
tail in the sample distribution. At the upward sloping point, we find three segments
(for example, in the first segment, the threshold value is almost equal to 5.969� 105).
The other two threshold values are 5.185� 106 and 2.376� 107.

The Hill plot in Figure 4 on the facing page displays an estimate of � for different
exceedances; a threshold is selected from the plot where the shape parameter � is
fairly stable. The number of upper-order statistics or thresholds can be restricted in
order to investigate the stable part of the Hill plot. Figure 5 on page 74 plots the
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FIGURE 3 The mean excess function of loss amount.
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FIGURE 4 The Hill plot of the loss amount.
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FIGURE 5 Cumulative density function of the estimated GPD model and the loss data
over thresholds. [Figure continues on next page.]
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cumulative density function of the estimated GPD model and the loss data over three
thresholds. We find that the GPD model also fits reasonably well.

Table 4 on the facing page reports some estimate results for the GPD model. For
example, when the threshold is set to 5.969� 105, the number of exceedances is 706.
We also calculate the VaR and ES at the 95%, 97.5% and 99% confidence levels using
Equations (2.9) and (2.11). The results are also shown in Table 4 on the facing page.
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FIGURE 5 Continued.

 

 

1 2 3 4 5 6 7 8 9 10

Loss data

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0.2

0.4

0.6

0.8

1.0

× 108

0

Loss data
GPD (threshold = 23 760 000)

(c)

(c) ThresholdD2.376�107.

TABLE 4 VaR and ES of the GPD.

Nu‚ …„ ƒ
706 216 74

Threshold 5.969�105 5.185�106 2.376�107

� scaling parameter 1.5892�106 9.9444�106 2.7023�107

(1.3256�105) (1.3048�106) (7.2302�106)

� shape parameter 1.2947 0.9581 1.0160
(0.0890) (0.1298) (0.2684)

VaR (95%) 5.3383�106 5.5622�106 6.4654�106

VaR (97.5%) 1.4013�107 1.5703�107 1.5976�107

VaR (99%) 4.7326�107 4.5081�107 4.4890�107

ES (95%) 2.0885�107 2.5152�108 5.8426�108

ES (97.5%) 5.0320�107 4.9355�108 1.1787�109

ES (99%) 1.6336�108 1.1947�109 2.9858�109

Figures in parentheses are standard deviation.Nu denotes the number of exceedances. VaR (95%), VaR (97.5%)
and VaR (99%) denotes the value-at-risk at the 95%, 97.5% and 99% confidence levels, respectively. ES (95%)
denotes the expected shortfall at the 95% level, and so on.

Table 5 on the next page presents results for the goodness of fit for the GPD model.
The fact that The KS test does not reject H0 at the 5% significance level means that
the loss data has a GPD distribution. The P -value of the LR test is smaller than all
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TABLE 5 Goodness of fit for the GPD model.

N of exceedances‚ …„ ƒ
706 216 74

Threshold 5.969�105 5.185�106 2.376�107

KS test 1 1 1
(P -value) (1.0000) (1.0000) (1.0000)

LR test 5.3970�103 5.3455�102 1.2139�102

(P -value) 0.0000� 0.0000� 0.0000�

The null hypothesis for the Kolmogorov–Smirnov test is that the loss data has a GPD distribution. The alternative
hypothesis is that the loss data does not have that distribution. The asterisk denotes significance at the 5% level.

TABLE 6 Bootstrap confidence intervals for GPD.

Threshold‚ …„ ƒ
5.969�105 5.185�106 2.376�107

� scaling Œ1.3495, 1.8715��106 Œ0.7689, 1.2861��107 Œ1.5995, 4.5654��107

parameter (1.5892�106) (0.9444�107) (2.7023�107)

� shape Œ1.1202, 1.4690� Œ0.7037, 1.2124� Œ0.4900, 1.5420�
parameter (1.2946) (0.9581) (1.0160)

Bootstrap confidence intervals at a significance level 5% for parameters. Figures in parentheses are the actual
scaling parameter.

the significance levels. It also shows that the GPD is good for model fitting. If the
parameters are unknown, but consistently estimated, the bootstrap distribution func-
tion is a reliable approximation of the true sampling distribution. We therefore take
the bootstrap method into account to estimate the confidence interval of parameters.2

Table 6 shows the confidence intervals of parameters � and � for the GPD model at
the 5% significance level. The results from Table 6 indicate that the bootstrap crit-
ical values are consistent estimates of the actual ones. Figure 6 on the facing page
shows that the bootstrap estimates for � and � appear acceptably close to normality.
The mean values of parameters from bootstrap estimates are close to the actual ones.
Hence, the thresholds that we have chosen are optimal and reasonable.

2 We generate 10 000 duplicate data sets by resampling from yi (exceedances over the threshold u)
to fit the GPD.
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FIGURE 6 Histogram of bootstrap for parameter � and � at different thresholds (5.969 �
105, 5.185 � 106 and 2.376 � 107). [Figure continues on next page.]
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(a) Bootstrap of � for 5.969�105. (b) Bootstrap of � for 5.969�105. (c) Bootstrap of � for 5.185�106. (d) Bootstrap
of � for 5.18� 106.

4 CONCLUDING REMARKS

In many applications of loss data distributions, a key concern is fitting the loss data
in the tail. As mentioned above, good estimates of the tails of fire loss severity distri-
butions are essential for pricing and risk management of commercial fire insurance
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FIGURE 6 Continued.
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loss. In this paper we have described parametric curve-fitting methods for model-
ing extreme historical losses using an LDA. We first execute an exploratory loss data
analysis using a Q–Q plot of lognormal, exponential, gamma, Weibull, GPD and GEV
distributions. The Q–Q plot and loglikelihood function value revealed the exponential
and Weibull distribution to be poorly fitted, while other distributions can be seen to
fit the loss data much better. Furthermore, we determined the optimal thresholds and
parameter value of GPD model using a Hill plot and a mean excess function plot. The
Hill plot is gratifyingly stable and concentrated in a narrow range. The selection of
thresholds suggested by the MEF plot also provided successful fittings of the GPD.
In addition, we also took the bootstrap method into account in order to estimate the
confidence interval of parameters. We had some success in fitting the GPD using high
thresholds of 5.969� 105, 5.185� 106 and 2.376� 107.

Last but not least, we showed that the GPD can be fitted to commercial fire insurance
loss severity. When the loss data exceeds high thresholds, the GPD is a useful method
for estimating the tails of loss severity distributions. It also means that the GPD is a
theoretically well-supported technique for fitting a parametric distribution to the tail
of an unknown underlying distribution.

Finally, we suggest some interesting directions for further research. First, it would
be useful to model the tail loss distribution for other forms of insurance. Second, from
a risk management viewpoint, constructing a useful management system for avoiding
large fire claims would be an interesting line of further research.
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